Autumn migration of passerine long-distance migrants in northern Morocco observed by moon-watching

GUDRUN HILGERLOH1*, JAN W EIN BECKER² and PAVEL ZEHTINDJIEV³

1Institute of Zoology, Ecology, Johannes Gutenberg-University Mainz, D-55099 Mainz, Germany
²Am Freibad 1, D-26419 Schortens, Germany ³Institute of Zoology, Bulgarian Academy of Sciences, blvd. Tsar Osvobodeltel 1, Sofia 1000, Bulgaria

The aim of this study was to test two different models of migratory orientation in passerines passing through the Iberian Peninsula. One model predicts a change of direction in southern Europe and the other predicts that migration follows an arching route through Europe and along the West coast of Africa. Measurements of migration direction were obtained by moon-watching at three sites in Morocco: Témara and Âin-el-Âouda, situated in the coastal region of Rabat, and near Douyêt, 150 km further east. There was no statistically-significant difference between the directional distributions of migrants in the coastal region and the inland site. Overall, the mean migration direction of 211° is consistent with the model that passerines passing through the Iberian Peninsula take an arching route through southwestern Europe and along the African west coast. Thus, an endogenous change of direction, previously demonstrated experimentally for the Garden Warbler Sylvia borin, may occur gradually along the migration route.

For European bird populations wintering in Africa, south of their breeding areas, the shortest route would be to fly directly south. However, most migrants leave central Europe in southwesterly directions, thus avoiding crossing the Alps, the Mediterranean and central parts of the Sahara (Bruderer & Liechti 1990, Hilgerloh & Bingman 1992). Therefore, since there are significant geographical barriers perpendicular to the direction of the shortest route, a longer route may be optimal to reach wintering quarters safely (Alerstam 2001). However, further south, it is an open question whether the Atlas Mountains, like the Alps, act as a barrier for migrants that have passed the Iberian Peninsula. An endogenous change of migration direction during the course of autumn migration was demonstrated experimentally for the Garden Warbler Sylvia borin (Gwinner & Wüstenfeld 1978). Two models exist with respect to where the change of direction takes place. The first predicts a change from southwesterly directions to southerly or south-southeasterly directions (‘Zugknick’) in the south of the Iberian Peninsula (Gwinner & Wüstenfeld 1978). The Atlas Mountains would not act as a barrier and be crossed in a southerly or south-southeasterly direction. The second model suggests that the long-distance migrants travel on an arching route from Central Europe through the Iberian Peninsula and continue along the African west coast (Hilgerloh 1989a, 2001). After passing the Sahara at its western edge they would turn to more easterly directions in the savannah to reach their wintering quarters. According to this model, south-southwesterly migration directions would prevail in Morocco. While migration directions have been observed in the south of the Iberian Peninsula (Hilgerloh 1988, 1989b, 1992, Bruderer & Liechti 1998), data from Morocco are lacking. We observed migration directions by moon-watching in northern Morocco and analysed the results in the light of these models.

METHODS

Study sites and data collection
Nocturnal migration was observed by the moon-watching method (Lowery 1951) in 2002 from 18 to 24 September at three sites in northern Morocco: 1) Témara, situated 10 km SW of Rabat at the Atlantic coast (33° 56'N, 6° 54'W, 40 m asl), 2) Al Kruaieb, near Âin-Âouda and 35 km SE of Rabat and Témara (33° 43'N, 6° 42'W, 330 m asl) and 3) Duar Arab Sabba, close to Douyêt and at 35 km NW of Fès (34° 02'N, 5° 15'W, 412 m asl). Site 3 is situated 152 km east of site

© 2006 British Trust for Ornithology
1 and 140 km ENE from site 2. The main ridge of the Atlas Mountains runs SW to NE along an angle of 250° at a distance of about 200 km south of Douyêt. The observations were performed during the migration period of long-distance migrants (Hilgerloh 1985, Hilgerloh unpublished data from Morocco).

Moon-watching was carried out according to the guidelines of Liechti (1996). The observer watched the full moon by telescope (30x magnification) and recorded the relative size, entrance and exit of all passing birds according to the face of a clock in 15° sectors. Under the assumption that the birds were flying horizontally, flight directions were calculated according to the position of the moon. Migration traffic rate (MTR), expressed as birds per h per km (birds h⁻¹ km⁻¹), was calculated on the basis of individual distance estimation, flight direction and the position of the moon (Liechti et al 1995); real size differences between birds were ignored. Observations were performed if the elevation of the moon exceeded 15° and for a total of 21 hours and 55 minutes during 10 nights between 18 September and 24 September. Between 20 and 22 September observations were performed simultaneously at Douyêt and at Témara. Observations were performed four nights at Témara, one night at Âin-el-Âouda and five nights at Douyêt. Only Passeriformes, identified according to their intermittent flight pattern, were included in the analysis.

Data analysis
The frequency distribution of flight directions was calculated on the basis of the MTRs of the individual bird movements. The angle of the mean vector (µ), referred to throughout as the mean migration direction, and the mean vector length (r) for each site were calculated by vector addition on the basis of all nights at each site as independent events. To test whether the directions of the birds differed significantly from randomness, the Rayleigh test was used (Batschelet 1981). Comparisons between mean migration directions at different sites were performed by the Watson–Williams test, which allows comparisons if samples contain at least five values; height distributions were compared by the t-test (Kovach 2003). In total, 636 birds were observed by moon-watching.

RESULTS
Mean nocturnal migration directions pointed to the south and southwest, varying between 174° and 235° (Table 1). At Témara, the mean migration direction amounted to 214° (vector length: r = 0.99, nights: n = 4, Rayleigh test: P < 0.01), at Âin-el-Âouda to 231° (n = 1) and at the inland site, Douyêt, to 204° (r = 0.94, n = 5, P < 0.01). There was no statistically-significant difference between the directional distributions of migrants in the coastal region (Témara and Âin-el-Âouda together: mean direction (µ) = 217°, r = 0.98, n = 5, P < 0.01) and the inland site (Watson–Williams test: P > 0.05). Summarising all nights, the mean direction was 211° (r = 0.96, n = 10, P < 0.01).

On an average, the MTR amounted to 1806 ± 905 (± SD; nights: n = 10) birds h⁻¹ km⁻¹ if the night of 23 September 2002 with a ninefold-higher MTR was excluded (Table 1). There was no statistically-significant difference between the MTR of Témara and Douyêt (t-test; t = 0.44, P = 0.68), if 23 September 2002 was excluded and also if only the three nights with the simultaneous observations were compared (Table 1; t-test: t = 1.16, P = 0.9131).

An exceptionally high density of migration occurred on 23 September 2002 (Table 1). More than 16,000 birds migrated per hour per km that night, and the MTR was as high as the total of the other nine nights. While migration on 23 September 2002 was directed towards 225° (Table 1), on the other nights migration was directed on average towards 209° (r = 0.96, P < 0.001; Fig 1).

Differences in the height distribution of birds on migration might be caused by different wind conditions, migrants flying lower in head winds and higher in tail winds (e.g. Hilgerloh 1981). At the coastal sites, migrants were flying up to higher altitudes above the ground than at the inland site during simultaneous observations (Fig

Table 1. Migration direction and traffic rate at three sites in northern Morocco. Number of observed birds (n) in each night at the sites Témara, Âin-el-Âouda (Âouda) and Douyêt, migration traffic rate (MTR), minutes (m) of observation, mean nocturnal migration direction (µ), vector length (r) and Rayleigh test (P).

<table>
<thead>
<tr>
<th>Site</th>
<th>Date</th>
<th>n</th>
<th>MTR</th>
<th>m</th>
<th>µ (-)</th>
<th>r</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Témara</td>
<td>20-09</td>
<td>27</td>
<td>1488</td>
<td>127</td>
<td>210°</td>
<td>0.79</td>
<td><0.001</td>
</tr>
<tr>
<td>Témara</td>
<td>21-09</td>
<td>11</td>
<td>855</td>
<td>100</td>
<td>203°</td>
<td>0.83</td>
<td><0.001</td>
</tr>
<tr>
<td>Témara</td>
<td>22-09</td>
<td>108</td>
<td>2936</td>
<td>181</td>
<td>218°</td>
<td>0.87</td>
<td><0.001</td>
</tr>
<tr>
<td>Témara</td>
<td>23-09</td>
<td>208</td>
<td>16274</td>
<td>60</td>
<td>225°</td>
<td>0.89</td>
<td><0.001</td>
</tr>
<tr>
<td>Âouda</td>
<td>24-09</td>
<td>70</td>
<td>2568</td>
<td>175</td>
<td>231°</td>
<td>0.77</td>
<td><0.001</td>
</tr>
<tr>
<td>Douyêt</td>
<td>18-09</td>
<td>41</td>
<td>1622</td>
<td>130</td>
<td>200°</td>
<td>0.85</td>
<td><0.001</td>
</tr>
<tr>
<td>Douyêt</td>
<td>19-09</td>
<td>44</td>
<td>1860</td>
<td>120</td>
<td>199°</td>
<td>0.71</td>
<td><0.001</td>
</tr>
<tr>
<td>Douyêt</td>
<td>20-09</td>
<td>101</td>
<td>3160</td>
<td>120</td>
<td>210°</td>
<td>0.90</td>
<td><0.001</td>
</tr>
<tr>
<td>Douyêt</td>
<td>21-09</td>
<td>4</td>
<td>642</td>
<td>60</td>
<td>174°</td>
<td>0.97</td>
<td><0.05</td>
</tr>
<tr>
<td>Douyêt</td>
<td>22-09</td>
<td>8</td>
<td>1127</td>
<td>60</td>
<td>235°</td>
<td>0.73</td>
<td><0.01</td>
</tr>
</tbody>
</table>
DISCUSSION

The mean migration direction in the study area was identical to that observed in Gibraltar (Hilgerloh 1989b). This direction would not be expected if birds performed an abrupt change of direction in the south of the Iberian Peninsula (Gwinner & Wiltschko 1978). Southwesterly migration directions would be predicted by the second model (Hilgerloh 1989a, 2000), according to which migrants continue migration in a fringe along the West African coast. This suggests that migrants perform an endogenous change of direction gradually along their migration route. This migration route implies that migrants cross the most westerly parts of the Atlas Mountains, the Atlantic Atlas. Birds migrating in the eastern part of our study area would have to cross higher Atlas mountains further east if they maintained the same mean direction. However, they might shift to more westerly directions before they reach the Atlas and continue migration closer to the coast since we would expect that most birds would bypass the higher parts of the Atlas Mountains.

ACKNOWLEDGEMENTS

We are most grateful to K Böhning-Gaese who gave the opportunity to perform the project in her working group, to the Ministère des Eaux et Forêts for the research permission in Morocco, to F Boudhol for giving us the opportunity to do the observations at the roof of her house at Témara and to I Kreusel for her help in the field. We thank F Liechti for the supply of a computer-program for the conversion of the moon-watching data into MTR, flight directions and height of the birds, to K Thorup and F Liechti for comments on a former version of the paper, and to W and R Wiltschko, to T Caprano, E M Griebeler, H-C Schaefer and A Hennig for fruitful discussions. This study was supported by the German Research Association (DFG).
REFERENCES

Liechti, F. (1996) Instructions to count nocturnal bird migration by watching the full moon. Schweizerische Vogelwarte, CH-6204 Sempach, Switzerland.

(MS received 16 February 2006; MS accepted 24 March 2006)